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ABSTRACT
The rapid growth in both computational density and scale in AI
models in recent years motivates the construction of an efficient
and reliable dedicated network infrastructure. This paper presents
the design, implementation, and operation of Meta’s Remote Direct
Memory Access over Converged Ethernet (RoCE) networks for
distributed AI training.

Our design principles involve a deep understanding of the work-
loads, and we translated these insights into the design of vari-
ous network components: Network Topology - To support the
rapid evolution of generations of AI hardware platforms, we sepa-
rated GPU-based training into its own “backend” network. Rout-
ing - Training workloads inherently impose load imbalance and
burstiness, so we deployed several iterations of routing schemes to
achieve near-optimal traffic distribution. Transport - We outline
how we initially attempted to use DCQCN for congestion manage-
ment but then pivoted away from DCQCN to instead leverage the
collective library itself to manage congestion. Operations - We
share our experience operating large-scale AI networks, including
toolings we developed and troubleshooting examples.
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1 INTRODUCTION
The growing prevalence of Artificial Intelligence (AI) in fields like
image recognition, natural language processing, and recommenda-
tion systems has introduced a new era of communication demands.
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Distributed training, in particular, imposes the most significant
strain on data center networking infrastructure. For instance, a
typical generative AI job may necessitate tight coordination of
thousands of GPUs over the course of several weeks. Constructing
a reliable, high-performance network infrastructure capable of ac-
commodating this burgeoning demand necessitates a reevaluation
of data center network design.

The inter-GPU communication in distributed training workloads
typically comprises two stages. In each training node, housing 4-8
GPUs, these GPUs are interconnected using high-speed transports
like NVLink[26], commonly known as “intra-node communication.”
When a training job requires additional GPUs, the “inter-node com-
munication” will happen across a network. The industry commonly
employs two design approaches for this inter-node communication.
One utilizes standard TCP/IP or modified socket implementations
(e.g., fastsocket[7]). However, this method is susceptible to perfor-
mance degradation because of CPU overhead and increased latency.
The second design approach involves proprietary interconnects,
such as InfiniBand[23], NVSwitch[26], Elastic Fabric Adaptor[2],
and Inter-rack ICI[8]. Although these methods deliver significantly
improved performance, their proprietary nature restricts their de-
ployment flexibility.

When Meta introduced distributed, GPU-based training, we de-
cided to construct specialized data center networks tailored for
these GPU clusters. We opted for RoCE[11] as the inter-node com-
munication transport. Remote Direct Memory Access (RDMA) is a
method to access the remote memory without involving the CPU.
The choice of RoCE was motivated by:

1) RoCE adheres to the established RDMA verbs semantics, well-
known to the training workload community. This ensured a seam-
less transition for existing training applications and facilitated the
development of new ones.

2) By utilizing Ethernet, we could employ a significant portion of
our existing data center design components and tools. This enabled
us to build the network using a largely consistent Clos-based design,
and it simplified our operations by reusing existing tools.

3) The entire stack is grounded in open standards and offers sup-
port from multiple vendors, ensuring compatibility and flexibility
in our network infrastructure.

We gained significant experience in designing and operating our
RoCE network as follows:
Dedicated backend network: We built a dedicated backend net-
work specifically for distributed training. This allowed us to evolve,
operate, and scale independently from the rest of the data center
network. To support Large Language Models (LLMs), we expanded
the backend network towards the DC-scale, e.g., incorporating
topology-awareness into the training job scheduler.
Evolution of routing schemes:Given the poor performance of the
default ECMP (Equal-Cost Multi-Path) routing and its alternatives
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Collectives Model Dist.
purpose Traffic pattern Network

congestion
GPU Msg
(MB)

NIC Msg
(KB)

Flow entropy
per NIC

Topology
need

AlltoAll(v)
Embedding
distribution

full mesh with
imbalanced traffic

N-to-N with
possible incast 1 128 log(𝑀 ∗ 𝑁 ) Full bisection

bandwidth

AllReduce DDP Tree or Ring 2-to-1
incast for Tree

4 (Tree)
1 (Ring) 512 log(𝑀) Tolerate

over-subscription

AllGather FSDP Ring 1-to-1
low congestion 1 512 log(𝑀) Tolerate

over-subscription

ReduceScatter FSDP Ring 1-to-1
low congestion 1 512 log(𝑀) Tolerate

over-subscription
Table 1: Transport implications from model and collectives for large collective sizes.𝑀 is number of channels used in NCCL. 𝑁
is number of RDMA NICs. Full-mesh implementation assumed for AlltoAll

in our initial stages, we deployed a combination of centralized traffic
engineering and an Enhanced ECMP scheme to achieve optimal
load distribution for training workloads.
Congestion control for collectives: We found that it is very
challenging to tune DCQCN, the mainstream congestion control
scheme used in RoCE deployments, to gain significant benefit in
collective completion time for distributed training tasks. Instead, we
have designed a receiver-driven traffic admission via the collective
library to achieve superior performance. This involves co-tuning of
both the collective library configuration as well as the underlying
network configuration to achieve optimal performance.

We have successfully expanded our RoCE networks, evolving
from prototypes to the deployment of numerous clusters, each ac-
commodating thousands of GPUs. These RoCE clusters support
an extensive range of production distributed GPU training jobs,
including ranking, content recommendation, content understand-
ing, natural language processing, and generative AI model training,
among other workloads. We have previously shared high-level
designs of RoCE clusters that support up to 32,000 GPUs.[18]

While RoCE has been a subject of networking research before [3,
6, 9, 19], its dominant application has historically been within stor-
age networks. There has been a dearth of literature addressing
RoCE’s deployment in large-scale AI training scenarios. In this
paper, we delve deeply into the intricacies of scaling the RoCE
network to interconnect thousands of GPUs in each cluster. Our
experience shows that, by understanding the workload well and
by carefully designing each component of the network, including
topology, routing, transport, and operational workflows, RoCE can
support AI training at scale.

This work does not raise any ethical issues.

2 BACKGROUND
2.1 Distributed Model Training
Distributed training is scaled by sharding themodel and/or the input
data across multiple GPUs, using various parallelism strategies. A
typical training process involves repeating training iterations. Each
iteration consists of a forward pass to generate losses, a backward
pass to compute gradients, and an optimizer step to update parame-
ters. The GPUs involved need to synchronize either the gradients or
the updated parameters multiple times within each iteration. This
synchronization process requires the transfer of large amounts of
data among the GPUs within milliseconds, repeated over multiple

iterations until the model converges. This necessitates a network
capable of delivering high bandwidth and low, predictable latency.

2.2 RoCE and Collective Communication
RDMA is an industry standard on hardware-assisted communica-
tion acceleration. RDMA implements “verbs” APIs such as read and
write. Compared to TCP/IP-based communication, where a packet
needs to be sent to the kernel before being copied into the memory,
RDMA bypasses the kernels of both sender and receiver and trans-
fers data directly from/to application memory. RoCEv2 is a protocol
that implements RDMA: an RDMA verbs message is encapsulated
in Ethernet/IPv6/UDP packets and carried through regular Ethernet
networks. The encapsulation/decapsulation is handled in RDMA
NIC hardware.

The collective communication library serves as the software
abstraction between training workloads and the NIC, interfac-
ing through the verbs API layer. It translates collectives1 (e.g.,
AllReduce) into logical topology implementations (e.g., Ring or
Tree) and further breaks those down into scheduling point-to-point
data transactions between GPUs with verbs. These transactions
require GPU-to-RDMA NIC support for optimal performance. The
collective library schedules verbs calls over Queue Pairs (QP) cre-
ated on source and destination NICs. NCCL[25], for example, im-
plements all collective algorithms and point-to-point semantics
using RDMA write operations. Each GPU-to-GPU pairwise trans-
action can be over multiple channels, and each NIC-to-NIC pairwise
transaction can be over multiple queue pairs.

Table 1 provides characteristics of major collectives used for dis-
tributed training and specific requirements per collective. First, the
collective is determined by the parallelism strategy. For example,
Distributed Data Parallel (DDP) [14] uses AllReduce, Fully Sharded
Data Parallel (FSDP) [41] uses AllGather and ReduceScatter.
Ranking models (e.g., DLRM [21]) makes use of AlltoAllv (a vec-
torized AlltoAll) to distribute the embeddings for model paral-
lelism.

Second, collectives can generate a diverse range of network
traffic patterns. For example, AlltoAllv forms a full-mesh traffic
pattern between all endpoints, potentially causing high ephemeral
congestion. However, its high number of active flows simplifies
routing, reducing persistent congestion risks with hashing schemes.

1More collective definitions can be found in [22].
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(a) Job size. (b) Collective type.

Figure 1: Distribution of job characteristics.2

Figure 2: Collective message size distribution.

Third, the choice of logical topology from collective operations
impacts network congestion and data exchange between GPUs.
For instance, AllReduce implemented as Ring vs Tree has unique
congestion and hash collision implications. NCCL optimizes the
specific choices, based on factors like GPU count and message
size. However, this approach has limitations, including potential
inaccuracies due to hard-coded profiles, sub-optimal performance
with certain message sizes or large scale jobs, and irrelevance of
the collective algorithm in some implementations.

2.3 Training workloads
To understand what collective communication is actually observed
in production, we leveraged Chakra [33] to gather collective statis-
tics of ∼30K randomly selected training jobs during 2023Q4.

Figure 1a shows the job size distribution from our collection.
Notably, we do not include the long tail of >128 GPU jobs in the
analysis, and so this excludes the LLM jobs. However, we note
below that because of multi-dimensional parallelism, analysis of
job sizes up to 128 GPUs is still highly relevant to large LLM jobs.

The distribution suggests that the majority of the job sizes are
the multiples of 8. This is because we mount 8 GPUs to each host
and partial host utilization is not recommended. To demonstrate
the diversity of the collectives used by different models, we break
down collectives by types. As shown in Figure 1b, AllReduce and
AlltoAll(v) dominate in DDP-basedmodels while AllGather and
ReduceScatter are the primitive collectives in FSDP. Message size
is the amount of data elements transferred in collective communi-
cation operation. We select two different models and observe that
2LLM jobs are not included.

Collectives Avg. # of QPs
per GPU

Buffer occupancy
per leaf switch (MB)

AlltoAll(v) 15 65.6
AllReduce 4 13
AllGather 4 22.1
ReduceScatter 4 19.6

Table 2: Traffic statistics in production (128 GPU)

the message size distribution varies a lot (as shown by Figure 2).
The data volume being transferred as well as the traffic pattern of
different models are also varied. This motivates our routing and
transport choices explained in the following sections.
Trends in job sizes: At the time of writing, ranking models largely
span around 8 - 256 GPUs. As we look toward the future, larger GPU
jobs are becoming increasingly common and the GPU hours they
consume is gradually trending up. This is due to the upward trend in
model size for ranking models, and in a more pronounced manner
for LLMs. For example, a large variant of Llama3 was trained on
16,000 GPUs on our RoCE cluster of 24,000 GPUs.[18]
Trends in number of GPUs per collective:Whether it is ranking
jobs or LLMs, the number of GPUs per collective operation is not
scaling at the same rate as job size. This is due to the usage of multi-
dimensional parallelism in deploying large models. This helps limit
the number of GPUs in the largest collective to hundreds of GPUs
even when running a job that is tens of thousands of GPUs. For this
reason, in the rest of the paper we focus on collective operations
that involve a GPU size range of 16 - 128.

2.4 Challenges
We faced several challenges in constructing a RoCE network for
distributed AI training needs.
Rapid evolution of training model: Rapid evolution of training
models necessitates an increase in network bandwidth towards
400Gbps and higher and a scale-out size to tens of thousands of
GPUs. While early ranking job sizes are moderate for now, LLM
training is known to occupy tens of thousands accelerators at the
same time [8] and ranking jobs are growing as well[39]. Construct-
ing a network of this magnitude while maintaining performant
inter-GPU communication presents a significant challenge (Sec-
tion 3).
Low entropy in traffic pattern: The traffic pattern in distributed
training exhibits low entropy in the UDP 5-tuple, as shown in Ta-
ble 2. This is a result of the collective communication discussed in
Section 2.2. Typically, one GPU is solely occupied by one training
job, whose logical topology is usually sparse. This leads to a sig-
nificant challenge for evenly distributing the traffic in routing to
achieve optimal performance (Section 4).
Different levels of network congestion: Distributed training
produces unique full mesh and hierarchical traffic patterns (like
Ring or Tree) that both produce different modes of congestion, as
shown in buffer occupancy in Table 2. These traffic patterns can be
seen in Figure 3. There is no standard best practice for dealing with
congestion for such traffic patterns with prior RDMA deployments
(Section 5).
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Figure 3: Traffic pattern comparison from experiments
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Figure 4: Grand Teton platform

The need for co-tuning: Collective libraries, e.g., NCCL, may
deliver sub-optimal, out-of-box performance with RoCE intercon-
nects due to the difference of the developer’s environment and
production. This necessitates the co-tuning of both collective li-
brary and network configurations to achieve optimal performance
(Section 6). Low entropy in traffic patterns can result in a few net-
work paths experiencing higher traffic than others resulting in
persistent congestion on those paths. Further, even with perfect
distribution of traffic, collective traffic patterns like AlltoAll can
produce microbursts. While both of these patterns can have nega-
tive impact on performance, the exact manifestation and solution
approaches to both of these problems are distinct. Hence, we cover
solutions to the former problem in (Section 4) and the latter in
(Section 5).

3 HARDWARE
In this section, we cover the hardware used for training nodes and
the network to set the stage for the software systems that run over
them.

3.1 Training Node
The increasing size of training models and datasets has made it
infeasible to confine the training process into a single GPU. It
also requires increased compute and memory, placing significant
demands on the network, thus lending themselves to a specially
designed scale up system.

Figure 5: Frontend and Backend networks

The first generation of training node design, ZionEX[20], com-
bines general-purpose CPUs with NVIDIA A100 GPUs. Grand
Teton[17], a more recent generation, is based on H100 GPUs. Both
ZionEX andGrand Teton utilize a similar system architecture except
for GPU NVLink interconnect. Figure 4 depicts Grand Teton’s inter-
nals. The node is divided into 3 trays - CPU Tray housing 2 CPUs
and frontend NICs, Switch Tray housing 4 PCIe Gen5 switches,
NVMe storage, as well as 8 RDMA NICs, and GPU Tray housing 8
GPUs. GPUs are fully-connected using NVSwitch[26]. There is a 1:1
mapping between GPUs and NICs. For a training job that uses fewer
than 8 GPUs, GPUs communicate with each other within the node
without network operation. For larger jobs, RDMA NICs enable
GPUDirect technology, so that GPU-to-GPU traffic can bypass host
and host memory bottlenecks.

3.2 The Network
The training cluster relies on two independent networks: the Fron-
tend Network (FE) for tasks such as data ingestion, checkpointing,
and logging, and the Backend Network (BE) for training, as depicted
in Figure 5.
Frontend network:A training rack is connected to both the FE and
BE of the data center network. The FE has a hierarchy of network
layers[1] - Rack Switches (RSW), Fabric Switches (FSW), and higher
- that house the storage warehouse, which provides GPUs with the
necessary input data for training workloads. We ensure that there
is enough ingress bandwidth on the rack switch to not hinder the
training workload.
Backend network: The BE is a specialized fabric that connects all
RDMA NICs in a non-blocking architecture, providing high band-
width, low latency, and lossless transport between any two GPUs
in the cluster, regardless of their physical location. This backend
fabric utilizes the RoCEv2 protocol, which encapsulates the RDMA
service in UDP packets for transport over the network.

3.3 Evolution
Our BE networks have undergone several transformations. Initially,
our GPU clusters used a simple star topology with a few AI Racks
connected to a central Ethernet switch. running the non-routable
RoCEv1 protocol. This setup had clear limitations in GPU scale and
switch redundancy. Therefore, we swiftly transitioned to a fabric-
based architecture for extended scalability and higher availability.
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AI Zone We designed a two-stage Clos topology for AI racks,
known as an AI Zone, as shown in Figure 6. The Rack Training
Switch (RTSW), serving as the leaf switch, offers scale-up connec-
tivity for GPUs within the rack using copper-based DAC cables.
The spine tier, composed of modular Cluster Training Switches
(CTSW), provides scale-out connectivity among all racks in the
cluster. The CTSW has deep buffers statically divided over the ports
in the chassis. The RTSWs connect to CTSWs via single-mode fiber
and 400G pluggable transceivers.
DC-Scale and topology aware scheduling: The AI zones are
designed to support a large number of interconnected GPUs in a
non-blocking manner. However, emerging AI advancements, such
as LLMs, demand a GPU scale larger than what a single AI Zone
provides. To accommodate this, we designed an Aggregator Train-
ing Switch (ATSW) layer that connects the CTSWs in a data center
building, expanding the RoCE domain beyond a single AI Zone.
Note, the cross-AI zone connectivity is oversubscribed by design,
with network traffic balanced using ECMP. To mitigate the per-
formance bottleneck for cross-AI zone traffic, we enhanced the
training job scheduler to find a “minimum cut” when dividing the
training nodes into different AI zones, reducing the cross-AI zone
traffic and thus collective completion time. The scheduler does this
by learning the position of GPU servers in the logical topology to
recommend a rank assignment.

3.4 Discussion
The separation between Frontend Network and Backend Network
was an early, major design decision in deploying RoCE. This was
mostly driven by the fact that we expected the two networks to
evolve independently. In addition, separating AI training traffic sim-
plified and accelerated routing and transport design iterations, as
the traffic carried by the two networks have very different and often
conflicting requirements. Finally, physical separation ensured the
ideal network environment for latency-sensitive RoCE operations.

4 ROUTING
The scaling of compute power and network topology discussed
above led to the question of how to efficiently balance and route the
massive training traffic. Specifically, the AI training workloads had
several challenging characteristics: (a) Low entropy: Compared
to traditional data center workloads, the number and the diversity
of flows for AI workloads are much smaller and the flow patterns
are usually repetitive and predictable. (b) Burstiness: On the time
dimension, the flows usually exhibit the “on and off” nature in

the time granularity of milliseconds. (c) Elephant flows: For each
burst, the intensity of each flow could reach up to the line rate of
NICs.

We describe below multiple stages of evolution of our routing
design to handle these challenges.

4.1 ECMP and Path Pinning
4.1.1 ECMP. We initially considered the widely adopted ECMP,
which places flows randomly based on the hashes on the five-tuple:
source and destination IP, source and destination UDP port, proto-
cols. However and as expected, ECMP rendered poor performance
for the training workload due to the low flow entropy.

We used Max-Mean Ratio (MMR), the flow count of the most
loaded link over the average flow count per link, to quantify ECMP
imbalance since most flows are the same size within one collec-
tive. We observed an average MMR over 1.2 for 1,000 flows on 16
links simulation. In reality, the situation is much worse as shown in
Table 2. This imperfect load balancing would result in high proba-
bility of collision of large elephant flows, and hence causing severe
congestion and slowing down the network throughput and job
performance.

4.1.2 Path Pinning. Alternatively, we designed and deployed a
path-pinning scheme in the initial years of our deployment. This
scheme routed packets to specific paths based on the destination
“slice” (the index of the RTSW downlink). This worked well if each
rack was fully assigned to the same job and there was no failure
in the network. However, this was seldom true. We saw that the
rack can be partially allocated to a job, with only one of the two
hosts in the rack is using the uplink bandwidth. This fragmented
job placement caused uneven traffic distribution and congestion
on the uplinks of the particular RTSW and degraded the training
performance up to more than 30%. Further, network failures on a
uplink or a CTSW caused the affected flows to be unevenly reas-
signed to other CTSWs by ECMP. Those reassigned flows collided
with other existing flows and slowed down the whole training job.

4.1.3 Short-Term and Long-Term Solutions. We mitigated the im-
mediate impact of these flow collisions by upgrading the bandwidth
of the RTSW uplinks bandwidth by 2x. Hence we allowed for the
RTSW uplink capacity to be 1:2 under-subscribed compared to
the RTSW downlink capacity. While this mitigated the immediate
performance impact as described later in Section 6.2, this was an
expensive solution as it required 2x network capacity. Thus, we
recognized this as a short-term mitigation and proceeded to further
stages of routing evolution.

4.2 Enhanced ECMP with QP Scaling
We next revisited ECMP with an intent to increase the number
of flows for hierarchical collectives through the Queue Pair (QP)
Scaling software feature in the collective library.

4.2.1 QP Scaling: The QP Scaling feature helps post messages
meant from each NIC-to-NIC flow as multiple flows by posting
messages over multiple QPs. We noticed low entropy persisted
even with this enabled and a larger number of active Queue Pairs
(QPs). Upon debugging, we found that while destination UDP ports
remained identical for different QP packets as expected, in some
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Figure 7: Performance Impact on AllReduce Benchmark: E-
ECMP and Queue Pair Scaling

(a) Ranking (b) LLM

Figure 8: QPs per NIC in production with QP Scaling

corner cases, so did the source UDP ports, and thus entropy did not
increase as we had hoped.

4.2.2 Customized Hashing: To account for this, we configured
switches to perform Enhanced ECMP (E-ECMP) to additionally
hash on the destination QP field of a RoCE packet using the UDF
capability of the switch ASIC. This increased entropy, and compared
to baseline ECMP without QP scaling, we observed (Figure 7) that
E-ECMP along with QP scaling showed performance improvement
of up to 40% for the AllReduce collective.

4.2.3 Balancing QP Trade-offs: QP buffers are a scarce resource
in RDMA NICs, and QP resources are used differently between our
Ranking and LLM workloads. Thus, we use QP=4 for Ranking as
they already have relatively high entropy due to full-mesh com-
munication involved (e.g., with AlltoAll). The result is seen in
(Figure 8). We use a QP Scaling factor of 16 for LLM workloads as
they involve hierarchical collectives, e.g., AllReduce.

4.2.4 Different QP Scaling Methods: We evaluated two QP scal-
ing strategies. The first involved splitting each message meant to
be posted over single QP, instead onto multiple QPs resulting in
multiple flows. But it also produced smaller message size on fabric
as well as multiple ACKs. The second approach involved posting
each message to a different queue, in a round-robin fashion. For
the NIC message sizes demonstrated in our production with NCCL,
we observed the latter to be performing well. This feature has been
important for ECMP scalability by increasing the network flows
for hierarchical collectives like AllReduce.

4.2.5 Motivation to Look Beyond E-ECMP:. While we improved
ECMP performance with QP scaling, the underlying probabilistic
nature of hashing was a persistent downside of this routing scheme.

Collector TE Engine
(CSPF)
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Scheduler
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Network 
Model

Topology 
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Control Plane
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Figure 9: Centralized Traffic Engineering architecture

Also, the need to customize the QP scaling factor and methodology
based on the workload type, while workable in the short-term,
presented long-term operational complexity.

4.3 Centralized Traffic Engineering
ECMP and path pinning approaches both had limitations from a
hardware perspective; thus, we tackled these by developing a cen-
tralized traffic engineering (TE) controller, leveraging our previous
experience in [5] and [31]. The TE controller dynamically optimizes
routing based on real-time workloads and topology input. Figure 9
provides an overview of TE’s architecture, demonstrating how it
optimizes dynamic path allocation.

4.3.1 Control Plane. The control plane design consists of three
components: First, the Collector creates a real-time topology of the
end-to-end training cluster. It achieves this by utilizing a topology
generator service to bootstrap a static topology from our in-house
data warehouse on network model. In addition, it constructs the
dynamic topology based on the link states provided by Open/R, our
in-house link state routing protocol, which is designed to capture
the real-time network state. Second, the TE Engine combines the
flow matrix, i.e., the flow bps, from a traffic matrix collector service
and job placements from the training job scheduler to derive the
traffic matrix, i.e., the byte counters of TE allocated flows. The TE
Engine runs a Constrained Shortest Path First (CSPF) algorithm
to process the real-time topology and traffic matrix, producing
an optimized flow placement periodically, e.g., every 30s. Finally,
the Switch Programmer takes the flow placement and translates
it into device-specific data plane primitives to enforce the routing
decisions.

4.3.2 Data Plane. The data plane operates based on the concept of
overriding the default routing policy. Default routes are provided
by BGP, ensuring connectivity to all prefixes in the cluster. TE
overrides these default routing decisions on RTSWs based on the
optimized flow placement, thereby providing the primary routing
for the RDMA traffic. TE comprises technologies capable of asso-
ciating a <source port, destination prefix> tuple with an action of
forwarding to a next-hop. Using the source+destination tuple pro-
vides finer granularity flow management while using destination
prefixes helps keep the scale of these entries manageable in hard-
ware. Specifically, we utilize the Exact Match (EM) table provided
by the hardware to override the default routes. BGP-determined
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(a) AlltoAll (b) AllReduce

Figure 10: Collective benchmark: Normalized Performance
Comparison between E-ECMP and TE (128 GPU)

routing decisions serve as a backup for the RDMA traffic when the
primary entry is absent due to failures.

4.4 Comparing TE and E-ECMP
Below, we present TE and E-ECMP performance evaluations via a
flow-level network simulator, followed by production benchmark re-
sults. We then describe the operational complexity of each scheme.

4.4.1 Simulation. The simulation results with production job place-
ment shows that under a non-optimal job scheduling scenario, E-
ECMP with 4 QPs per each source-destination pair results in 40%
longer than roofline completion time on average. Increasing the
QP-scaling to 32 improves performance: worst case is improved
from 20% to 52% of roofline. However, the majority of jobs can not
achieve the roofline. In comparison, TE with actual demands can
achieve 100% utilization when there’s enough capacity in network.
However, when the link availability is compromised by failures to
less than 1:1 subscription ratio, TE can be outperformed by E-ECMP.

4.4.2 Benchmark Evaluation. In a controlled environment, we have
observed much more balanced link utilization with TE with a real-
world NCCL benchmark [16, 24] compared to E-ECMP on a 16-
uplink setup. With E-ECMP, link utilization varies largely: 40-90%
of max bandwidth, whereas TE uniformly utilizes 80% of max band-
width, reducing the worst case scenario. Figure 10 shows that with
fixed world size (128 training node), TE outperforms E-ECMP by
5-10% in AllReduce and AlltoAll collectives.

4.4.3 Operational Experience with TE and Lessons Learned: We
rolled out TE in the ranking-based AI Zones with E-ECMP as a
backup routing scheme to handle traffic impacted by failures. We
observed that TE was similar to the earlier stage path-pinning
routing schemes at effective load balancing, performing well (Sec-
tion 6.2) as modelled in simulations and measured with benchmarks.
However, our simulations and deployment showed that TE is also
prone to lower performance when multiple links failures happen
in the network. We had originally considered these to be rare cases
during simulation, but in practice, they happened more frequently
than expected. Further, TE had additional software complexity
and manageability overhead. While this was manageable in the
AI Zone deployments, we chose not to use TE at DC-scale as this
additional complexity/overhead would be even greater given the
much-increased size of the network. Computationally, there was
also increased load to handle another layer of switches (ATSWs)
and the accompanying path diversity. E-ECMP, hence presented a

Figure 11: Out-of-order packets under flowlet interval

better operational trade-off for our DC-scale clusters. Thus, TE was
the primary routing scheme for the majority of clusters targeting
ranking workloads, while E-ECMP was the primary routing scheme
for DC-scale deployments.

4.5 Future Direction: Flowlet switching
While TE and E-ECMP comprise our routing approach for different
deployments, there are operational trade-offs with each as described
earlier.

Flowlet switching[35] is one of the alternative schemes to ad-
dress issues seenwith both of these routing schemes. This technique
[35] relies on finding gaps in the flows. When a gap is found in the
flow, the flowlet engine makes a decision to reassign the flow to
a new ECMP member port based on the load. This is a hardware
assisted scheme, supported by the first-hop switch (RTSW), which
reacts to changes in the port load at microsecond granularity. In our
testing, such a scheme has exhibited superior link load balancing
and better performance in case of congestion and multiple-link
failure scenarios. Adaptability of this scheme helps it scale with
minimal QP scaling for 4 for all workloads. Not needing customized
QP scaling on per workload basis mitigates E-ECMP’s issues. Hard-
ware support for the scheme helps mitigate the software complexity
concerns from TE.
Out-of-order Packets: Flow reassignments can result in out-of-
order packets mainly because we resort to path reassignment with
active flows. Managing out-of-order packets is an important aspect
of this technique and require tuning the flowlet interval. Theoret-
ically this gap needs to be approximately half of the round trip
time of the network. Doing so ensures that flow is reassigned to
a new path only when previous packets in the same flow have at
least reached destination before switching the path resulting in
drastic reduction of out-of-order packets. As shown in Figure 11,
out-of-order packets go down non-linearly as the interval increases.
The out-of-order packets are below 1 packet/second in the 256-
512𝜇s flowlet interval range. On the flip side shrinking the flowlet
interval leads to more aggressive load balancing. However, there is
a diminishing return on performance from more aggressive load
balancing. For example in 200G based experimental setup (Figure
11), insignificant difference in performance was found between 256
usec and 512 usec flowlet intervals for A2A collectives. We are able
to tune the flowlet interval to achieve optimal load balancing and
throughput while incurring negligible to no out-of-order packets.
Load-aware path assignment: For very high interval, flowlet
switching tends to be like ECMP where flows are assigned ports
statically for the lifetime of the flow. Interestingly, we observed
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that even in those scenarios, flowlet switching exhibited superior
load balancing as compared to ECMP simply because of its picking
up initial port based on the port quality (load) rather than hash. So
while the path doesn’t change for the lifetime of the flow, flowlet
mechanism makes better decision to pick the path based on its
current port load. In workloads where we do not have long lived
flows, we will still benefit from this mechanism.
Status:We found during the initial testing that flowlet switching
can achieve similar performance as TE with lower operational cost.
Our future roll-out plans with flowlet switching will depend on the
signals we get from early deployments. We will cover outcome of
such roll-out along with more in-depth trade-offs in future work.

4.6 Discussion
Initially, we had observed low link utilization due to the inefficiency
in ECMP as reported in [9] that led to inconsistent performance. To
mitigate that, we deployed a temporary over-build of the network.
In parallel, we evolved our routing through various stages, including
static routing, dynamic routing, and traffic engineering, to achieve
consistent and high-performance training. The evolution of routing
schemes and resulting positive impact on performance consistency,
measured with production data, is presented in Section 6.2. We
believe that this will be a continued important research area given
the continued evolution of distributed training workloads.

5 TRANSPORT
This section is a deep-dive into our transport design and solutions
for challenges relating to network congestion listed in Section 2.4.
Section 4 addressed solutions to persistent congestion due to ineffi-
cient load balancing. Even with perfect distribution of traffic, col-
lective traffic patterns like AlltoAll can cause momentary buffer
buildup and micro bursts as shown in Table 2. This phenomenon
presents the need for flow control and congestion control for achiev-
ing predicable performance by avoiding traffic drops and offering
predicable tail latency. We start by describing our initial attempts
to leverage DCQCN and then how we pivoted away from DCQCN
to manage congestion via receiver-driven admission control at the
collective library layer.

5.1 Implementation
We implemented several transport configurations to achieve high
bandwidth, low, and predictable latency in our RoCE setup. We
collaborated with NIC vendors to support GPUDirect with Linux
inbox drivers for better software stack manageability. We used
DSCP-based PFC and a single lossless queue across all network
switches and NICs to prevent packet drops on Layer 3 network
connections. We relied on a go-back-N re-transmit mechanism
for rare packet drops due to unhealthy network elements or link
flap/down. However, packet drops on acknowledgement packets
(ACK or NACK) can cause prolonged Local ACK Timeout (LAT)
on the order of milliseconds. Therefore, quickly recognizing and
isolating unhealthy network elements and links and carefully tun-
ing LAT duration, are important for predictable training workload
performance.

Figure 12: ECN impact on performance: Allreduce comple-
tion time(ms) on 32 GPUs comparison with CTSW ECN
threshold changes. Baseline uses 5MB as both low and high
thresholds. A tighter threshold of 300KB low and 600KB high
leads to lower performance.

Figure 13: Tuning DCQCN for AlltoAll collective

5.2 Congestion Control
While PFC helps avoid congestion drops, hop-by-hop PFC propa-
gation during persistent congestion can lead to head-of-line (HoL)
blocking, resulting in flow unfairness and poor performance.We ini-
tially deployedDCQCN for our 200G deployments, as recommended
by prior RDMA deployments. Our implementation involved a)
switches marking in-flight packets with ECN during congestion
events, b) receiver NICs generating and sending back Congestion
Notification Packets (CNP) to indicate the need to slow down flows
upon receipt of marked packets, and c) senders reducing the traffic
injection for corresponding flows based on received CNP.

5.2.1 Limitations of Tuning DCQCN for Collectives. We found DC-
QCN, the de facto congestion control scheme used in RoCE, is less
performance effective for training collectives from our experience
in 200G and 400G RDMA deployment.
Tuning DCQCN is challenging: Initially, we deployed default
DCQCN algorithm with a strict ECN threshold configuration to
minimize PFC in our 200G RDMA deployment. However, in practice,
we found that while tight thresholds helped avoiding PFC, they
significantly reduced the throughput of collective performance in
some corner cases. While we do not shared data here for extreme
regressions seen in corner cases, Figure 12 shows one of the cases
that tighter ECN thresholds hurt collective completion time for 32
GPU AllReduce benchmark by a smaller margin (∼ 5%).
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Figure 14: GPU to GPU communication architecture.

We hence reverted to relaxed (5MB) ECN threshold in CTSW and
swept other DCQCN settings inNICwith 128GPU AlltoAll, which
exhibited worst case congestion and queue buildup in training. We
tried both aggressive and relaxed DCQCN settings. Figure 13 shows
examples of how we can get marginally better completion time
with a few different relaxed DCQCN setting combinations by a
small margin of 3%. But in all of those cases, congestion metrics
like PFC became worse by 2-3x, which diminished our intent to
adopt DCQCN to avoid HoL blocking and latency inflation.

Thus, we stayed with relaxed ECN marking, allowing for buffer
build up in the CTSW, while keeping default DCQCN settings.
Experience with 400G: As we transitioned to 400G deployments,
we attempted to further tune DCQCN to adapt to new network
speeds and topology. However, with default DCQCN settings and
doubled ECN thresholds compared to 200G networks, performance
was degraded. Further investigation revealed that DCQCN imple-
mentation in firmware has changed, introducing bugs and reduced
visibility with problems relating to correct CNP counting.

We proceeded without DCQCN for our 400G deployments. At
this time, we have had over a year of experience with just PFC for
flow control, without any other transport-level congestion control
(butwe do use collective-library controls for higher layer congestion
management). We have observed stable performance and lack of
persistent congestion for training collectives. An indirect positive
outcome of this decision is for monitoring purposes, in cases of slow
receivers or momentary congestion in the network, we can measure
the impact by monitoring NIC pause duration to understand the
percentage of time it stopped transmitting or receiving - as opposed
to looking at both Congestion Notification Packet metrics and PFC
metrics.

5.2.2 Receiver-Driven Traffic Admission via Collective Library. To
mitigate the congestion for 400G and beyond, we co-designed the
collective library and RoCE transport to enforce receiver-driven traf-
fic admission for better performance. Figure 14 shows that the GPU-
to-GPU communication architecture in our production training
clusters predominantly uses two-stage copy and receiver-initiated
communication via the NCCL collective library. Each GPU’s High
Bandwidth Memory (HBM) maintains multiple channels for paral-
lel transmission of chunked collective messages. The sender GPU
threads first copy data from compute buffer to an available chan-
nel buffer. The sender CPU proxy thread can only post an RDMA
write request after receiving a clear-to-send (CTS) packet from the
receiver, which includes the size and memory information. The
receiver’s GPU threads then copy the channel buffer contents to
the destination compute buffer. Finally, CPU proxy threads on both

PFC Perftest Gather

Downstream RTSW→CTSW 350K/sec 0
CTSW→Upstream RTSW 183K/sec 0
Upstream RTSW→Sender NIC 10% duration 0

Table 3: Receiver-driven traffic admission under incast

sides recycle the channel buffer, and the receiver CPU proxy sends
another CTS packet once the channel buffer is ready.

We effectively leverage this mechanism as a receiver-driven traf-
fic admission to limit the amount of in-flight traffic on the network,
especially when congestion starts to build up. However, configuring
the right setting can be challenging as: 1) the number of channels
is limited due to the resource contention on GPU threads with
concurrent compute operations; 2) setting the channel buffer size
requires a more careful balance between congestion spreading and
bandwidth under-utilization than Infiniband due to RoCE’s more
coarse-grained flow control and possible end-host slowness.

Thus, we took two steps to improve the performance. First, we
experimentally determined the right parameter settings for the
number of channels and channel buffer size across various training
job sizes and collective types. Second, we implemented high priority
queuing at switches for CTS packets to expedite the notifications
and mitigate potential bandwidth starvation.

To demonstrate the effectiveness of this mechanism, we con-
ducted 16:1 incast experiments on our 400G network with only
PFC enabled, as shown in Table 3. We compared a streaming traffic
generator Perftest [27] and a recurring NCCL Gather collective
test. Although Gather collective is rarely used in our production
training, it generates the most severe incast among other collectives,
stressing our mechanism. Both tests ran for five minutes, producing
16:1 incast with the same traffic volume. We observed HoL blocking
in perftest. The deep buffer in the CTSW absorbed a significant
amount of congestion, but not enough to prevent back pressure
from reaching the sending NICs. However, no PFC back pressure
was observed in Gather collective case. To mimic the slow receiver
scenario observed in production, we further restricted the band-
width of the receiver in Gather collective case to only 25% of its
capacity. We observed that our mechanism adapts to the through-
put changes. While we observed Receiving NIC sending 75% of TX
pause duration to RTSW, the RTSW absorbed all of this congestion
and did not cause back pressure to the CTSWs.

This experiment highlights how receiver-driven traffic admission
with the collective library results in controlling network congestion.

5.2.3 Absorbing In-Network Congestion. Our AI zone is built on
a 2-stage Clos architecture (Section 3.2). While we used switches
with shared and shallow buffer architecture for our RTSWs, we
used CTSWs with deep buffers. We leveraged these large buffers
by statically carving them per port on the ingress. This large per-
port buffer helped absorb any ephemeral congestion and ensured
a port facing back pressure to reduce HoL blocking across ports.
Given the high radix of our spine switches, we considered this non-
blocking architecture an additional safety layer towards minimizing
congestion.
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(a) AlltoAll

(b) AllReduce

Figure 15: Network/Collective Co-Tuning performance

5.3 Discussion
Congestion control have been a focal point of research in RDMA
networks [15, 43]. DCQCN has been the “gold standard” for storage-
focused networks. However, our experience with distributed AI
training workloads provides a different perspective on tailoring
the congestion control algorithms. Despite turning off DCQCN and
multiple instances of RTSW sending PFC to a deep-buffer CTSW,
we have not encountered a scenario over the last 4 years where
production AI training traffic causes the CTSW to send PFCs to
RTSWs persistently. Specifically, it’s worth evaluating the feasibil-
ity of operating without transport-level congestion control at all.
Our current solution depends on careful coordination between the
collective communication library and the network, and may de-
pend on the relative throughput between GPU and network, which
may not be applicable to all scenarios. We encourage the research
community to put more focus on this topic.

6 EXPERIENCES
6.1 Co-tuning Network and Collective
Our journey towards achieving close to roof-line communication
performance for AI Training workloads involved tuning how col-
lective library, transport and network layers interact together. We
have been able to improve the out-of-the-box RoCE performance by
more than 2x in many cases and even higher as shown in Figure 15.

We observed NCCL may deliver sub-optimal out-of-the-box per-
formance due to the difference of the developer’s environment
vs. our production environment. Some of the assumptions from
the developer environment include: very low RTT latency (<10𝜇s),

an adaptive routing mechanism, a non-blocking topology without
over-subscription. Those assumptions are shown in sub-optimal
choices across the architecture, including a two-stage copy in post-
ing smaller messages; a receiver-initiated architecture that relies
on control messages (CTS) in the critical path; and limited logical
topology choices that accumulate latency at large gangs, e.g., Ring
for AllGather. In terms of adaptability, NCCL used in our produc-
tion environment learns and adapts to server topology, but it has
no default awareness of network topology.
Higher unloaded RTT: In our production, we observed higher
unloaded RTT ( 22𝜇s) due to CTSW switches using a Virtual Output
Queuing (VOQ) architecture and hence requiring credit informa-
tion exchange from egress to ingress queue. This high latency
necessitated tuning the message size posted to be larger as well
as ensuring more outstanding data on the network. This involved
tuning channel buffer size and message size that is posted to the
network to be just large enough to achieve optimal performance.
For latency-sensitive collectives like AllGather, ReduceScatter,
increasing the message size as well as interim buffer size improved
performance.
Rendezvousmessage performance impact:The Receiver-driven
communication architecture relies on rendezvous messages such as
Clear to Send (CTS) and Acknowledgements (ACK). In production,
we observed that congestion buildup has delayed these messages
on the return path. We instrumented NCCL to measure the aver-
age delay the sender is waiting for such packets. We reduced this
delay from P90 of 43 us to 4 us. Changing the QoS priority of CTS
messages was implemented as a collective library change. For ACK
packets, we used RTSWASIC features to modify the DSCP marking
to land them in a different priority.
Small messages: NCCL [25] accounts for optimal performance
for small collective sizes by following 2 strategies: 1) Different
logical topologies to implement the same collective, e.g., Tree vs
Ring, 2) Different low-latency or high-bandwidth protocols, e.g.,
Simple, LL128, LL (low latency), to deal with memory barriers when
crossing GPU memory to the PCIe / RDMA boundary or vice-versa.
Each topology or protocol may be optimal for smaller or larger
collective size. However, the tuning of when to use a particular
logical topology or protocol is calculated by a static tuning model
that assumes low fabric latency (both loaded and unloaded). This
results in unfavorable trade-offs and poor performance. We explain
the latency trade-offs of logical topology and protocols below.

Our strategy to achieve optimal performance at smaller ormedium
collective size is to tweak the tuning algorithm to choose recursive
logical topology (Tree) or one that posts larger messages on the
network (Rail-based Alltoall) as well as protocols (LL128) at larger
collective sizes than the default NCCL choice. Posting larger mes-
sages helps reduce the number of CTS and completion messages.
CTSW latency:While the above tuning and changes ensure the
collective performance is optimal for our baseline RTT, we also
reduced the RTT from CTSWs that leverage a VOQ architecture.
This involved tuning amore aggressive credit allocation from egress
to ingress port, both in terms of initial allocation as well as the ramp
curve of credits. For hierarchical collectives specifically that are
latency-sensitive, we noticed up to 15% performance improvement
for small sizes.
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Figure 16: Performance in various Network Stages

Other enhancements included tuning NIC PCIe credits and re-
laxed ordering; network-topology-aware rank assignment; and
eliminating causes for zero-byte messages sent by the NIC that
are not supported by Ethernet switches but are supported by Infini-
Band. All of these changes helped ensure our RoCE fabric provides
optimal AI Training performance, in spite of distinct artifacts such
as high fabric RTT.

6.2 Impact of Routing and Topology
We examine the evolution of one of our ZionEX AI Zones (200G
based) through stages over time, from a routing and topology per-
spective. Figure 16 depicts the performance of each stage (time
period) over tens of thousands of jobs run over years, quantified by
normalized AllReduce collective bandwidth[24].

The Stage 1 Backend Network has a topology with 1:1 subscrip-
tion ratio from RTSW-to-CTSW, while Stage 2 has a topology with
1:2 under-subscription. Both Stage 1 and Stage 2 use static rout-
ing with traffic collisions. We observe a significant performance
increase with additional capacity when migrating from Stage 1
to Stage 2. The lower and inconsistent performance in Stage 1 is
attributed to the static routing traffic collisions as described ear-
lier. While the performance impact was resolved with Stage 2’s
under-subscription, the solution came with investing 2x network
infrastructure.

Stage 3 shows performance when we migrated our network
setup to be controlled by the traffic engineering while keeping
under-subscription to 1:2. You can observe similar performance
with Stage 2 but with a tighter band. In Stage 4, we further reduced
under-subscription ratio to 1: 1.125 to reclaim CTSW hardware
without any negative impact to performance. We didn’t reduce the
under-subscription all the way to 1:1 in order to allow for buffer
for up to two link failures.

6.3 Observability Tools
As we operate these RoCE backend networks, we require observ-
ability over all network components (fabric, routing, transport)
and the collectives in order to quickly troubleshoot failed or slow
workloads.

6.3.1 Job-Facing Network Errors. RDMA is very sensitive to net-
work issues and hence it affects GPU training efficiency. In order
to quickly examine the RDMA network condition behind a train-
ing workflow, we built telemetry systems to automatically collect
RDMA hardware counters across the network switch, NIC, PCIe

switches and GPUs. We identified three important counters to iden-
tify network issues: (1) Out-of-Sequence (OOS): The number of
packets out of sequence as perceived by the NIC. This helped us
identify and root-cause many instances of packet drops due to un-
healthy network switches as well as NIC hardware bugs. There
were instances of packet drops not reported anywhere else, but
this transport metric showed the existence of the problem. (2) Link
Flap Counters: This can indicate both hardware and software flaps
reported by the NIC. (3) Local Ack Timeouts (LAT): The number of
times a Queue Pair’s ACK timer expired for QPs at the sender side.
Expiration can impact performance regressions and on occasion
job failures. With RoCET, these counters are directly reported to
users when their jobs fail and serve as a strong indication that some
components within the network may be misbehaving.

6.3.2 Operator-Facing Network Errors. We have safeguard mecha-
nisms built into our network where we not only monitor and detect
anomalies but also perform automated mitigation to fix many of
these issues.
PFCWatchdog. This is enabled on both RTSW and CTSW devices
to catch any long-duration PFC pause (>200ms) which could be
because of deadlocks or a bad NIC which continues to send PFC
frames.
Buffer thresholds and Congestion Drops. We have monitoring
around buffer utilization on RTSW devices. Alarms are raised if
buffer utilization goes beyond 80% which points to either persistent
congestion or a bug. In practice, we have not breached this threshold.
We also monitor packet drops due to congestion. Since we have a
lossless network, these drops are uncommon and observed mostly
due to misconfiguration.
Reachability. We have several in-house tools periodically checking
for the health and connectivity of the fleet by sending pings to
various nodes to detect either aliveness or abnormal loss and delay
in the network.

6.4 Troubleshooting Examples
In this section, we share a few incidents that demonstrate the com-
plexity of operating such RoCE networks.

6.4.1 Performance Baseline. We observed a performance regres-
sion detected during one of our cluster turn-ups. We found no
congestion metric that we were monitoring that was out of the
baseline. Further investigation revealed that the only difference
was the software image we had in our CTSWs. After downgrading
the CTSW images to be the same as the one used in the baseline, the
numbers aligned again. We engaged the vendor to understand the
delta between the two images, and it was highlighted that there was
a change in the internal packet scheduling which led to a higher
port-to-port latency for that device. This incident showcased the
need for constant latency monitoring in our backend networks,
both loaded (with congestion) and unloaded (when the network is
not saturated).
Implication This issue showcased the need to measure and moni-
tor loaded and unloaded latency to ensure we catch regressions due
to various factors. We now use a mix of synthetic traffic generation
and library instrumentation to capture this and establish a baseline.
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6.4.2 Dynamic Nature of AI Training Job. We observed several
CTSWs reporting RoCE traffic drops in a training cluster which we
migrated to support the integration of the TE controller. Migration
consisted of: reconfiguration of the CTSWs, changes in the QoS
settings, routing changes in the RTSWs, and PCIe credit upgrade
for NIC. Only a few switches reported traffic drops post migration,
but the aggregate drop volume was enough to disrupt some jobs.

Upon investigation, we traced the problem to an intricate inter-
action of multiple parallel events. The primary cause of the drop
was a bug from an outdated assumption about the SRAM buffer size
in the CTSWs, which led to tail-drop of traffic when more than half
of the buffer was populated. The overflowing of the SRAM buffer
only occurred under a certain combination of aggravating factors:
(1) a firmware upgrade that enabled more aggressive RoCE packet
transmission, (2) a training job with bursty traffic pattern, and (3)
the introduction of H100 GPUs with greater computing resources
and thus higher I/O requirements.
Implication: This incident showcased the importance of thorough
validation and performance regression checks before deploying
changes. It is important to note that in the problem space of RoCE
for AI training jobs, we must contend with the dynamic nature of
training jobs. A significant portion of training jobs is experimental,
so predicting traffic patterns and therefore conducting thorough
end-to-end testing is challenging. This incident emphasized the
importance of having effective detection and alerting systems to
quickly identify and respond to issues.

7 RELATEDWORKS
Deployment experience of RDMA networks: Traditionally,
RDMA networks had been deployed mostly for storage applica-
tions for its reduced CPU overhead and network latency [3, 6, 9, 19].
There are many efforts to address several issues in deploying RDMA
at scale, such as congestion control [15, 43], reliability [9, 10, 28, 38],
and performance isolation [40]. To the best of our knowledge, we
are the first to present challenges and experience in deployment
RDMA networks for large-scale AI training, including the reassess-
ment of topology, routing, and operation aspects.
Improving networks for AI: There are many works proposed
to improve the networks for AI workloads. For instance, existing
works propose new network topologies [36, 37] to align with traf-
fic demand and characteristics in distributed training. BytePS [12]
leverages spare CPU and bandwidth resources to accelerate dis-
tributed training, while many efforts exploit network bandwidth
to accelerate collective communication [4, 30, 32]. [29] proposes
a novel scheme to combine congestion control and scheduling to
accelerate training. In this paper, we showed how we focused on
improving RDMA for AI training by presenting deployment expe-
rience and best practices in operating AI network at large-scale.
Networks andAI co-design: Prior works illustrated the benefits of
co-designing network communication and AI training. For instance,
TPU clusters are optimized with 3D parallelism for training large
models [13], while Neo is paired with ZionEX with 4D parallelsim
for optimizing communications for large-scale DLRM training [20].
Some works propose to automate model parallelism [34, 42]. In
this paper, we have shared similar principles to co-design RDMA

networks with the understanding of distributed training workloads
from the speed, scale, and collective communication.

8 CONCLUSION
The design and operation of large-scale RoCE networks for dis-
tributed AI training workloads have evolved to meet the increasing
demands of computational density and scale. By segregating Fron-
tend and Backend networks, employing various routing schemes,
and optimizing collective traffic patterns, we have been able to build
a performant and reliable network infrastructure. These designs
and insights underline the importance of deeply understanding the
training workload and translating these implications into network
component design, ultimately contributing to the advancement of
distributed AI training infrastructure.

ACKNOWLEDGEMENT
Many current and former people in the Network Infrastructure team
at Meta have contributed to productionizing RoCE networks for AI
training over the years. In particular, we would like to acknowledge
Srinivas Sridharan, Petr Lapukhov, Jose Leitao, and Brandon Taylor.
This work is a close collaboration with our partners in Meta’s
AI Production Engineering, AI and Systems Co-design, and AI
Hardware Systems teams. We are also indebted to Omar Baldonado,
our shepherd Kun Tan, and the anonymous SIGCOMM reviewers
for their comments and suggestions on earlier drafts.

REFERENCES
[1] Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev, Hyojeong

Kim, Nanda Kishore Salem, Jingyi Yang, Petr Lapukhov, Aditya Akella, and
Hongyi Zeng. 2021. Running BGP in Data Centers at Scale. In 18th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 21). USENIX Asso-
ciation, Virtual, 65–81. https://www.usenix.org/conference/nsdi21/presentation/
abhashkumar

[2] Amazon. 2024. Elastic Fabric Adapter. https://aws.amazon.com/hpc/efa/.
[3] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir

Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin, Daniel
Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert
Greenberg, Manish Gupta, Randy Haagens, Matthew Hendel, Ridwan Howlader,
Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit
Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu,
Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power,
Suraj Puri, Shachar Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali
Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson,
Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce
Yom, Lihua Yuan, Yanzhao Zhang, and Brian Zill. 2023. Empowering Azure
Storage with RDMA. In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23). USENIX Association, Boston, MA, 49–67.
https://www.usenix.org/conference/nsdi23/presentation/bai

[4] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan
Xiong. 2023. MSCCLang: Microsoft Collective Communication Language. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 502–514. https://doi.org/10.1145/3575693.3575724

[5] Marek Denis, Yuanjun Yao, Ashley Hatch, Qin Zhang, Chiun Lin Lim, Shuqiang
Zhang, Kyle Sugrue, Henry Kwok, Mikel Jimenez Fernandez, Petr Lapukhov,
Sandeep Hebbani, Gaya Nagarajan, Omar Baldonado, Lixin Gao, and Ying Zhang.
2023. EBB: Reliable and Evolvable Express Backbone Network in Meta. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference (, New York, NY, USA,) (ACM
SIGCOMM ’23). Association for Computing Machinery, New York, NY, USA,
346–359. https://doi.org/10.1145/3603269.3604860

[6] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan
Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng Cao, Chen Tian,

https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://aws.amazon.com/hpc/efa/
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1145/3575693.3575724
https://doi.org/10.1145/3603269.3604860


RDMA over Ethernet for Distributed AI Training at Meta Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng Wu. 2021. When
Cloud Storage Meets RDMA. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, Virtual, 519–533.
https://www.usenix.org/conference/nsdi21/presentation/gao

[7] Google. 2024. Fastsocket. https://cloud.google.com/kubernetes-engine/docs/how-
to/nccl-fast-socket.

[8] Google. 2024. Google Cloud demonstrates the world’s largest dis-
tributed training job for large language models across 50000+ TPU v5e
chips. https://cloud.google.com/blog/products/compute/the-worlds-largest-
distributed-llm-training-job-on-tpu-v5e.

[9] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 202–215.
https://doi.org/10.1145/2934872.2934908

[10] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,
and Kai Chen. 2019. Tagger: Practical PFC Deadlock Prevention in Data Center
Networks. IEEE/ACM Transactions on Networking 27, 2 (2019), 889–902. https:
//doi.org/10.1109/TNET.2019.2902875

[11] IBTA. 2024. RMDA over Converged Ethernet. https://www.roceinitiative.org/.
[12] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, Virtual, 463–
479. https://www.usenix.org/conference/osdi20/presentation/jiang

[13] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 82, 14 pages. https://doi.org/10.1145/
3579371.3589350

[14] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch distributed: experiences on accelerating data parallel training. Proc.
VLDB Endow. 13, 12 (aug 2020), 3005–3018. https://doi.org/10.14778/3415478.
3415530

[15] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
2019. HPCC: high precision congestion control. In Proceedings of the ACM
Special Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19).
Association for Computing Machinery, New York, NY, USA, 44–58. https://doi.
org/10.1145/3341302.3342085

[16] Mingyu Liang, Wenyin Fu, Louis Feng, Zhongyi Lin, Pavani Panakanti, Shengbao
Zheng, Srinivas Sridharan, and Christina Delimitrou. 2023. Mystique: Enabling
Accurate and Scalable Generation of Production AI Benchmarks. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (Orlando,
FL, USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 37, 13 pages. https://doi.org/10.1145/3579371.3589072

[17] Meta. 2024. Grand Teton. https://www.opencompute.org/documents/grand-
teton-intel-based-cpu-tray-specification-v1-0-pdf.

[18] Meta. 2024. Introducing Meta Llama 3: The most capable openly available LLM
to date. https://ai.meta.com/blog/meta-llama-3/.

[19] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li, Shuguang
Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi, Binzhang
Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and Hongqiang Harry Liu. 2022. From
luna to solar: the evolutions of the compute-to-storage networks in Alibaba cloud.
In Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands)
(SIGCOMM ’22). Association for Computing Machinery, New York, NY, USA,
753–766. https://doi.org/10.1145/3544216.3544238

[20] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang,
Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie
Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi
Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnaku-
mar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr
Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill
Jia, and Vijay Rao. 2022. Software-Hardware Co-Design for Fast and Scalable
Training of Deep Learning Recommendation Models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York, New York)
(ISCA ’22). Association for Computing Machinery, New York, NY, USA, 993–1011.
https://doi.org/10.1145/3470496.3533727

[21] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean

Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. arXiv:1906.00091 [cs.IR]

[22] NVIDIA. 2024. Collective Operations. https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/usage/collectives.html.

[23] NVIDIA. 2024. InfiniBand Networking Solutions. https://www.nvidia.com/en-
us/networking/products/infiniband/.

[24] NVIDIA. 2024. NCCL Tests. https://github.com/NVIDIA/nccl-tests.
[25] NVIDIA. 2024. NVIDIA Collective Communications Library (NCCL). https:

//developer.nvidia.com/nccl.
[26] NVIDIA. 2024. NVLink. https://www.nvidia.com/en-us/data-center/nvlink/.
[27] PERFTEST PACKAGE. 2023. perftest. https://enterprise-support.nvidia.com/s/

article/perftest-package.
[28] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan Ren. 2019. Gentle flow

control: avoiding deadlock in lossless networks. In Proceedings of the ACM Special
Interest Group on Data Communication. Association for Computing Machinery,
New York, NY, USA, 75–89. https://doi.org/10.1145/3341302.3342065

[29] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya Akella.
2022. Congestion control in machine learning clusters. In Proceedings of the
21st ACM Workshop on Hot Topics in Networks (Austin, Texas) (HotNets ’22).
Association for Computing Machinery, New York, NY, USA, 235–242. https:
//doi.org/10.1145/3563766.3564115

[30] Joshua Romero, Junqi Yin, Nouamane Laanait, Bing Xie, M. Todd Young, Sean
Treichler, Vitalii Starchenko, Albina Borisevich, Alex Sergeev, and Michael Math-
eson. 2022. Accelerating Collective Communication in Data Parallel Training
across Deep Learning Frameworks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA,
1027–1040. https://www.usenix.org/conference/nsdi22/presentation/romero

[31] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric: Steering Oceans of Content to
the World. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17). Association for
Computing Machinery, New York, NY, USA, 418–431. https://doi.org/10.1145/
3098822.3098853

[32] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan
Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh.
2023. TACCL: Guiding Collective Algorithm Synthesis using Communication
Sketches. In 20th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 23). USENIX Association, Boston, MA, 593–612. https:
//www.usenix.org/conference/nsdi23/presentation/shah

[33] Srinivas Sridharan, Taekyung Heo, Louis Feng, Zhaodong Wang, Matt Bergeron,
Wenyin Fu, Shengbao Zheng, Brian Coutinho, Saeed Rashidi, Changhai Man,
and Tushar Krishna. 2023. Chakra: Advancing Performance Benchmarking and
Co-design using Standardized Execution Traces. arXiv:2305.14516 [cs.LG]

[34] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quin-
tero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Ja-
maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere, Jongsoo Park, Misha Smelyan-
skiy, and Alex Aiken. 2022. Unity: Accelerating DNN Training Through Joint
Optimization of Algebraic Transformations and Parallelization. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX
Association, Carlsbad, CA, 267–284. https://www.usenix.org/conference/osdi22/
presentation/unger

[35] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). USENIX Association, Boston, MA, 407–420. https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/vanini

[36] Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and Naader
Hasani. 2023. How to Build Low-cost Networks for Large Language Models
(without Sacrificing Performance)? arXiv:2307.12169 [cs.NI]

[37] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,
Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. TopoOpt:
Co-optimizing Network Topology and Parallelization Strategy for Distributed
Training Jobs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 739–767. https:
//www.usenix.org/conference/nsdi23/presentation/wang-weiyang

[38] Xinyu Crystal Wu and T. S. Eugene Ng. 2022. Detecting and Resolving PFC
Deadlocks with ITSY Entirely in the Data Plane. In IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications. IEEE Press, London, United Kingdom,
1928–1937. https://doi.org/10.1109/INFOCOM48880.2022.9796798

[39] Jiaqi Zhai, Lucy Liao, Xing Liu, YuemingWang, Rui Li, Xuan Cao, Leon Gao, Zhao-
jie Gong, Fangda Gu, Michael He, Yinghai Lu, and Yu Shi. 2024. Actions Speak
Louder than Words: Trillion-Parameter Sequential Transducers for Generative
Recommendations. arXiv:2402.17152 [cs.LG]

https://www.usenix.org/conference/nsdi21/presentation/gao
https://cloud.google.com/kubernetes-engine/docs/how-to/nccl-fast-socket
https://cloud.google.com/kubernetes-engine/docs/how-to/nccl-fast-socket
https://cloud.google.com/blog/products/compute/the-worlds-largest-distributed-llm-training-job-on-tpu-v5e
https://cloud.google.com/blog/products/compute/the-worlds-largest-distributed-llm-training-job-on-tpu-v5e
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1109/TNET.2019.2902875
https://doi.org/10.1109/TNET.2019.2902875
https://www.roceinitiative.org/
https://www.usenix.org/conference/osdi20/presentation/jiang
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3579371.3589072
https://www.opencompute.org/documents/grand-teton-intel-based-cpu-tray-specification-v1-0-pdf
https://www.opencompute.org/documents/grand-teton-intel-based-cpu-tray-specification-v1-0-pdf
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.1145/3544216.3544238
https://doi.org/10.1145/3470496.3533727
https://arxiv.org/abs/1906.00091
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://github.com/NVIDIA/nccl-tests
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/nvlink/
https://enterprise-support.nvidia.com/s/article/perftest-package
https://enterprise-support.nvidia.com/s/article/perftest-package
https://doi.org/10.1145/3341302.3342065
https://doi.org/10.1145/3563766.3564115
https://doi.org/10.1145/3563766.3564115
https://www.usenix.org/conference/nsdi22/presentation/romero
https://doi.org/10.1145/3098822.3098853
https://doi.org/10.1145/3098822.3098853
https://www.usenix.org/conference/nsdi23/presentation/shah
https://www.usenix.org/conference/nsdi23/presentation/shah
https://arxiv.org/abs/2305.14516
https://www.usenix.org/conference/osdi22/presentation/unger
https://www.usenix.org/conference/osdi22/presentation/unger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/vanini
https://arxiv.org/abs/2307.12169
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://doi.org/10.1109/INFOCOM48880.2022.9796798
https://arxiv.org/abs/2402.17152


ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia A. Gangidi et al.

[40] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury. 2022. Justi-
tia: Software Multi-Tenancy in Hardware Kernel-Bypass Networks. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1307–1326. https://www.usenix.org/
conference/nsdi22/presentation/zhang-yiwen

[41] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min
Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison,
Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao,
Ajit Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully
Sharded Data Parallel. Proc. VLDB Endow. 16, 12 (aug 2023), 3848–3860. https:
//doi.org/10.14778/3611540.3611569

[42] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Par-
allelism for Distributed Deep Learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad,
CA, 559–578. https://www.usenix.org/conference/osdi22/presentation/zheng-
lianmin

[43] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://www.usenix.org/conference/nsdi22/presentation/zhang-yiwen
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

	Abstract
	1 introduction
	2 Background
	2.1 Distributed Model Training
	2.2 RoCE and Collective Communication
	2.3 Training workloads
	2.4 Challenges

	3 Hardware
	3.1 Training Node
	3.2 The Network
	3.3 Evolution
	3.4 Discussion

	4 Routing
	4.1 ECMP and Path Pinning
	4.2 Enhanced ECMP with QP Scaling
	4.3 Centralized Traffic Engineering
	4.4 Comparing TE and E-ECMP
	4.5 Future Direction: Flowlet switching
	4.6 Discussion

	5 Transport
	5.1 Implementation
	5.2 Congestion Control
	5.3 Discussion

	6 Experiences
	6.1 Co-tuning Network and Collective
	6.2 Impact of Routing and Topology
	6.3 Observability Tools
	6.4 Troubleshooting Examples

	7 Related Works
	8 Conclusion
	References

